

Automated Fitness Instructor Certification
Website

DESIGN DOCUMENT

Team Number: sddec19-04
Client: AFIC

Advisor: Dr. Mohammed Selim

Team:
David Bane / Group Facilitator

Ryan Menster / DB Admin
Christine Hicaro / Group Admin

Maxwell Talley / Scribe

Team Email: sddec19-04@iastate.edu
Team Website: http://sddec19-04.sd.ece.iastate.edu/

sddec19-04 1

http://sddec19-04.sd.ece.iastate.edu/

Table of Contents

1 Introduction 3
1.1 Acknowledgement 3
1.2 Problem and Project Statement 3

1.2.1 General Problem Statement 3
1.2.2 General Solution Approach 3

1.3 Operational Environment 4
1.4 Intended Users and Uses 4
1.5 Assumptions and Limitations 5
1.6 Expected End Product and Deliverables 6

2 Specifications and Analysis 8
2.1 Proposed Design 8
2.2 Design Analysis 8

3 Testing and Implementation 9
3.1 Interface Specifications 9
3.2 Hardware and Software 10
3.3 Functional Testing 10
3.4 Non-Functional Testing 11
3.5 Process 12
3.6 Results 13

4 Closing Material 13
4.1 Conclusion 13
4.2 References 15
4.3 Appendices 16

sddec19-04 2

1 Introduction

1.1 Acknowledgement
Throughout this project, we will work with a number of different people. Dr. Mohamed Selim is
our faculty advisor. His guidance will be very useful to our team throughout the process. We will
also be in contact with is Nathan Schaffer, who started the project last summer and helped us get
the project off the ground.

1.2 Problem and Project Statement

1.2.1 General Problem Statement

Our client, AFIC has asked us to help them in the creation of a certification website for their
instructors. Right now, AFIC keeps track of all instructor information by hand in spreadsheets.
Handling the information this way takes time away from people who could otherwise be doing
more meaningful work. As the company grows and more instructors are hired on, the amount of
work needed to manually certify instructors will grow exponentially, which can lead to a major
delay in the certification process as a whole. Bringing this process online would both increase the
accuracy of the information as well as greatly decreasing the amount of bookkeeping work they
have to do. This website will allow AFIC a quick, streamlined process for instructor certification.

1.2.2 General Solution Approach
To bring AFIC’s certification process online, we will need to design and implement a new
website for them. This website will include a database to store all of their instructor information,
upcoming workshops, and anything else they need. The website will also include a fully
functional user interface so instructors and managers can access all the data they need as well as
automating as much of the certification process as possible. The frontend of the website will be
created using React, a well supported JavaScript library that specializes in creating beautiful and
effective user interfaces. The backend of the website will be created using Express, which
utilizes Node.js to create a functioning component of the website that seamlessly communicates
with both the frontend and a database.

By the end of the project, our team hopes to complete an Instructor Certification Website that
meets AFIC’s expectations and allows them to instantly start using the created website to certify
and add new instructors without needing to dig into multiple spreadsheets for the information.

sddec19-04 3

1.3 Operational Environment
The operating environment for our end product will be calm and hazards will be a minor
concern. With our end product being a website, this will be ran on a computer. The website is
for a company so it is expected that this computer will be kept within an enclosed office. Apart
from the usual minor hazards of having an electrical appliance plugged in, there are no more to
be identified. Another aspect of our project will be servers maintained by a third party. It will
be the responsibility of this offsite third party to maintain and protect the servers. Therefore, any
hazards pertaining to the servers are not within our team’s development scope.

1.4 Intended Users and Uses
The intended use of this product is for instructors to be able to submit and apply for
certifications. This will allow for much of the work to be automated instead of the current
system being by hand. There will be three types of users for the system:

1. Manager
a. The higher level of the two primary users of the website. These individuals can do

everything that an Instructor/Trainer can do, other than apply for certification.
Along with those abilities, Managers can view the master list of instructors in the
company, as well as review certification applications, where they can then choose
to approve or decline the application. Managers do not have to register their
account. It will be done so automatically.

2. Instructor/Trainer
a. The most basic user level. These individuals can login to the website, where they

can see any workshops, messages, or notifications that are currently available to
view, as well as modify their account and view locations. Finally,
Instructors/Trainers can submit an application for certification.

3. Server
a. The final user of the website. The system is responsible for keeping the website

running. This includes performing login/register verification and sending out
notifications and messages to the users.

Since there are two types of user authorization in this program (Manager and
Instructor/Trainer), then there must also be two sets of permissions towards the data available to
use.

Many of the use cases are shared between the types of users. The shared use cases are viewing
workshops, locations, notifications and routine login behaviors. The use cases unique to
managers are viewing a master instructor list, reviewing applications, and deciding to approve or

sddec19-04 4

decline those applications. For instructors, their unique use case are the registration and
submitting applications use cases. The server will be in charge of authentication, sending
notifications, and sending messages.

1.5 Assumptions and Limitations
● Assumptions

○ An existing style has been set and can be used if we wish
■ A previous intern had created an initial frontend of the website
■ We can base our design off of his already existing design

○ We are free to create the backend with whatever technology/programming
language that we wish

■ Currently, we plan to use Express, a Node.js framework
○ We are free to create the frontend with whatever technology/programming

language that we wish
■ We will be using React, a JavaScript library that specializes in creating

user interfaces
■ We will be using material-ui, a React framework, to assist in development

○ We are free to use any hosting platform that we desire, provided that its costs are
manageable (i.e. around the same cost as Amazon Web Services)

■ Currently, we plan to use Microsoft Azure

sddec19-04 5

○ A database will be provided via the hosting platform
○ Up-to-date instructor certification information will be provided at the start of

implementation
○ The website will not need to be too scalable

■ User count will remain relatively consistent throughout the website’s
lifecycle

○ The product will be used only on computers
■ Mobile devices will not need to be accounted for

○ Only Managers can create accounts for Instructors
○ There are only two types of users: Managers/Owners and Instructors

● Limitations

○ Current limitation of expected requirements
■ Will require future meetings with client to verify that our current direction

is correct
○ Budget will be practically nonexistent for our team
○ Test cases can be difficult to create, due to number of components involved
○ Extensive database information is currently unknown
○ No current structure for the backend is known
○ Original client is no longer with the project

■ Will need to decide which components that the client initially wanted will
be kept and which will be changed

■ Will need to determine if a new “faux client” will be implemented
○ Group members’ schedules do not line up well with each other
○ Website must be intuitive and easy to navigate through
○ Group members are not familiar with the programming languages (React and

Express) that will be used for the project.

 1.6 Expected End Product and Deliverables
This project contains three primary components that will form the overall end product. The three
components will be a frontend, a backend and a database. This product itself will be a fully
functional automated Instructor Certification Website. This website will allow for the
certification work currently done by hand to become a streamlined process. The three main
components and final product will act as our deliverables.

The first of these will be the frontend, also known as the user interface. This will be delivered in

sddec19-04 6

September and allow for some feedback regarding usability to be delivered. The second
component to be delivered will be a fully functioning database that will be populated with
up-to-date information we are provided with. This component will be stored in our Azure cloud
service and will be delivered in October. The last of the components to be delivered will be our
backend Express service. This service will allow for the frontend and database to communicate
and will be delivered in November. The last deliverable is the final fully functioning product.
All three of our components will work together and reliably. This will be AFIC’s new
certification website and will be delivered in December. No other additional materials will be
delivered alongside the finished website unless requested.

● Functioning Frontend/User Interface - Delivery Date: September 13th, 2019
○ The user interface will be developed with React and consist of any visual objects

that are required in the website. The visuals will range from images, buttons, text
fields, tabs, etc. The functionality of all of these visuals may not be fully
completed but much of the basic web navigation will be. The functionality that
would not be completed would be anything that sends to or retrieves data from the
database. This functionality will be visible during the delivery of our backend.
The frontend will be designed to be intuitive and easy to navigate. Even with this
design it will need to be verified by the team at AFIC.

● Functioning Database - Delivery Date: October 18th, 2019
○ The database delivered will contain all of the up-to-date information pertaining to

the instructor certification process. The information will be organized in a
manner that minimizes repetition and produces efficient results. The information
contained within this database will be able to be removed, added and modified.
This database we plan to host via Azure and will interact with the Express
backend. This will allow for data to be retrieved for presentation or sent for
modification using the user interface.

● Functioning Backend - Delivery Date: November 22nd, 2019
○ The backend will be the last component with the purpose of connecting the two

prior components. As previously mentioned the service used for the backend will
be Express. Express is a backend that interfaces well with our React frontend and
is written in Javascript. Express is what any send or receive calls will pass
information through. The backend is also planned to be hosted using Azure.

● Functioning Instructor Certification Website - Delivery Date: December 13th, 2019
○ The fully implemented Instructor Certification Website will fulfill all of the

requirements specified by AFIC. The website will allow a Manager to create an
account for an Instructor with a default level of “Trainee”. From here an
Instructor will be able to apply for recertification or an increase in certification.
The respective Manager of the Instructor will then be able to approve or

sddec19-04 7

disapprove. Any computer will be able to access this website but only those with
the proper credentials will have any access. The user interface will be intuitive
and easy to use. The source code for this website will be available via ISU’s
Gitlab and on the Azure Cloud Service. No additional documentation will be
provided unless requested.

2 Specifications and Analysis

2.1 Proposed Design
To solve the problem we have been given, we will use three frameworks to help us manage the
frontend, backend, and database. These frameworks all run in Javascript and will allow us to
quickly build a secure and robust platform for our client.

For our frontend framework, we will be using React. React is component-based and will allow us
to pass data to our app without keeping any of that data in the DOM. React is considered the
industry standard for frontend Javascript frameworks and is well supported with a very active
community [10]. Before we chose React, we debated using one of the other major frontend
frameworks, Vue. Vue is very similar to React, but we chose to go with React because it is
considered the industry standard [10], [13]. Functionally, either of these frameworks would have
worked. We decided that the experience we would gain using React would aid us in the future,
and since they are functionally equivalent, we chose to go with React.

The next framework we chose to use is called Express, a backend framework written in
Javascript [5]. The other frameworks we debated using were: Laravel, a PHP framework;
Django, a Python framework; and Spring, a Java framework [3], [9], [12]. We chose to go with
Express for a few reasons, the first being that all of us had experience using Javascript and it
would be easy to use the language throughout our project rather than have multiple. Express is
also very easy to set up and has a robust set of tools for managing the backend of a web
application. Express was also chosen partially so that we could use a really nice database ORM,
Sequelize.

Sequelize is a Javascript framework that is used to manage a database. It is a very robust tool that
allows for easy setup and teardown of a database. It is easy to set up and manage relations as

sddec19-04 8

well, making it a simple choice for us [11]. One of our team members has used this framework
with Express in the past and though we didn't do any research for this project regarding database
ORMs, Sequelize was deemed the best option for a past project with very similar needs. For all
these reasons, we decided this framework would suit our project as well.

2.2 Design Analysis
Our design analysis was of the work done with the project before it landed in the hands of our
team. While looking over this prior work we noticed a few flaws. The first of these flaws was
that the framework used was a deprecated version of Angular [2]. To continue using this
framework in our development of the project would result in bugs and difficulty for future
maintenance. We also felt the decision to use AWS as a cloud service was lacking in
comparison to other services like Azure.

Apart from the flaws we did like the choice to use Express as the backend service. We were
warned about failed attempts using Express as the backend but still felt it was the right choice.
We also knew that the current design had been appreciated by our client. Although the
framework and libraries would be different, the current design would still be very useful in
creating a new but similar design.

As we planned to keep the positive aspects of the current project development, we had to look at
what would be changed. To counter the deprecated framework, a decision was made to use
React. Apart from being reliable react would also work with one of the positive traits. The
React framework and Express service both work very well together. As referred to earlier, our
team had opposing thoughts towards the use of AWS. Instead, using Azure as the cloud service
for this project was presented. It was deemed that Azure could be cheaper, more intuitive and
more reliable [8]. With these changes we were confident that the project is headed in the right
direction.

All of these components will allow us to create an application AFIC can use to automate their
instructor certification process. All of the data will be stored in a backend database that is routed
to the frontend via the Express service. The frontend, being the user interface is created through
the React framework. All of this technology is stored within our Azure cloud service acting as
our server. In order to create the automation their will be a backend algorithm that will parse the
required data. After determining whether or not a certification is approved the appropriate action
will be routed. This way all of the requested requirements will be completed for our client.

sddec19-04 9

3 Testing and Implementation

3.1 Interface Specifications
Our project does not interface with hardware. In terms of software interfacing, our database
interfaces with our backend, which interfaces with our server. Moreover, the backend defines
how to check the database and interact with it; it consists of controllers that process user input
accordingly. The frontend retrieves data from our server, and the user interface displays the data.

3.2 Hardware and Software
Our project can be broken into 3 main components: the user interface, backend, and database.
The user interface is composed of the instructor display pages, which encompasses all pages the
instructors will view their information on. This includes pages such as the certification
application page, account page, and login/logout page. The frontend also includes a locations
view, which allows managers and instructors to see the different gym locations as well as a
workshops page, which allows instructors to see the different workshops they can attend to
upgrade their certifications. The backend is composed of controllers that correspond to each of
the pages, as well as specific instructor and manager controllers to serve different content based
on what type of user is logged in. A manager has admin privileges and can add locations and

sddec19-04 10

workshops, approve new instructor addition requests, and manage existing instructors. The
database is composed of models that correspond to each of the pages, including employee
information, locations, and workshops.

For the testing phase, we will be using Jest and Enzyme to test our project. These two testing
frameworks will be used to integration test our project. When done right, integration testing is
the only form of testing that is strictly necessary. We will be able to cover some unit testing
bases with our integration tests. Integration testing is basically ensuring that our different
components/modules work as they should together. Some components may work fine when
tested in isolation, but combined with other pieces of the project, problems are bound to occur.

We will use Jest to test parts of the project such as our API calls. Jest has a really nice mocking
tool, which will allow us to fake any data that might need to be sent with those API calls [7].
Enzyme will be used to test things such as if a button does what it's supposed to when it's pushed
[4].

3.3 Functional Testing
There are three types of testing that we will utilize: unit testing, integration testing, and
acceptance testing. The following goes into detail about each stage of testing:

Unit Testing
We will be using unit testing to catch bugs early and often in the development of our project. A
good practice to approach unit testing would be to automate a click-through of the entire
application and make sure everything returns what is expected. This stage of testing only tests
individual components, meaning there will be no interaction between different components when
testing them out. Thus, there will be no direct interaction with the database and tests that require
information from the database can use fake data that represents the information from the
database instead.

Integration Testing

Integration testing will primarily be for testing interactions with our database. For instance, if a
manager wants to add an instructor, then an integration test must be made to see that the
instructor has been added to the database. This is similar to a unit test, however, the value being
returned is directly from the database as opposed to being mocked or fake data.

Acceptance Testing

sddec19-04 11

Acceptance testing is the final stage of testing to be completed after unit and integration testing.
The entire application should be fully developed and function as expected, upon completion of
unit and integration testing, before writing acceptance tests. When writing acceptance tests, we
must make sure that assumptions and constraints are considered ahead of time. For instance,
execution of a certain use case of the application can be affected by different operating systems
and web browsers; the acceptance tests should be performed on each operating system and web
browsers that are specified ahead of time. An example of an acceptance test for testing if a
manager can approve a certification application would be to have a manager follow the
following steps:

1. Visit the web application with the given URL
2. Log in with their given username and password
3. Navigate to and click on the “Certification Applications” tab
4. Click on one certification application that is requesting to be approved
5. Assuming the application can be approved, click on the “approve” button

The expected result would be:
1. The application shows up as “approved”
2. A pop-up shows confirming that the application has been approved and has a button to

return to the home page or certification applications tab

3.4 Non-Functional Testing
For non-functional testing, we will be test for performance, security, usability, and compatibility
of the web application.

Performance
In terms of performance, there is not much that needs to be tested. The only thing that would
need to be confirmed is that there is little to no wait time to load pages. This should not be an
issue unless there are thousands of entries in the database that need to be queried at once, which
is not expected. If there were thousands of entries in the database to filter through for one query,
then the load time for pages could be slowed down depending on if pagination were
implemented or not.

Security
Our project will make use of authentication for instructors and managers. An outsider who is not
an instructor or manager at AFIC should not be able to access the web application. If outsiders
were to have access to the web application, there would be the risk of people other than AFIC
instructors and managers accessing the instructor and/or manager information. Thus, we will
need to test that the authentication works properly. Moreover, we will need to test that users can

sddec19-04 12

log in with only their username and password.

Usability
Since the web application will be developed specifically for AFIC instructors and managers, it
should be easy to follow and intuitive for someone who is most likely not highly technical. To
test the ease and overall flow of the application, we will have the actual instructors and managers
use the application and provide us with feedback on how we could make the application easier to
use.

Compatibility
Although our project has been requested to be mainly a web application, it can be extended to
other platforms if time permits. If so, then the application would be able to be accessed on other
smart devices, such as iPads, and on mobile. On each platform, the web application should
function the same way as the web application on a regular browser. In addition, the formatting
should be appropriately modified on each platform, and the overall user interface should look
clean.

3.5 Process
Unit to integration to acceptance to user with loops back to each prior step for the diagram.
As stated in section 3.2, we will test the entire project with integration testing.

3.6 Results

This project is still currently underway so the amount of results for our final project we can
conclude are limited. We were although able to make some conclusions from the initial website

sddec19-04 13

AFIC presented us with. The website they were developing was using Angular as their frontend
framework. We found that this version of AngularJS was now deprecated [2]. In order to update
this framework to the current version of Angular it would need to be completely rewritten. This
gave us the opportunity to pick a different framework, leading to us switching to React. We also
took note that AFIC planned to use AWS as their cloud service. After completing research into
other options we came across Microsoft Azure. This cloud service was more intuitive, provided
extensive customer support and on average was a cheaper service than AWS [1], [8]. We look to
take these current design decisions to improve AFIC’s Instructor Certification Website. The
result we plan to see is a robust, user friendly website that automates the instructor certification
process.

4 Closing Material

4.1 Conclusion

So far, our team has researched different libraries for frontend and backend implementation. Out
of this research, we have chosen to use React for the frontend, as it provides a well-supported,
easy to learn environment for creating a functional, good-looking user interface. For the backend,
we have chosen to use Express, which is a JavaScript framework for Node.js. Express is easy to
set up and works well with React, so we felt that it was the best choice to use for the Instructor
Certification Website.

We will also be using Azure, a Microsoft cloud service, to host the website itself. Initially, we
planned on using Amazon Web Services to host the website, but after researching, we believe
that Azure is the best choice, as it is generally less expensive and has better options for support.
Azure will also be where we implement our database for the website [8].

For testing, we will be implementing a variety of different testing techniques. For functional
testing, we will use Unit Testing to catch bugs early in the development, Integration Testing to
verify that the communication between our backend and database is working correctly, and
Acceptance Testing to verify that the final product works as specified by the client. When all
three of these tests pass, the project will be considered satisfactory for completion.

Along with functional tests, we will also perform non-functional tests. These include
Performance Testing to that the website is responsive and fast, Security Testing to make sure that
malicious users cannot do harm to the website or its data, Usability Testing to make sure the
website is easy to understand and navigate, and Compatibility Testing to make sure that the
website itself is able to be viewed on devices of any size, such as smartphones and tablets.

sddec19-04 14

Our main goal for this project is to create a website that allows AFIC to streamline their
instructor certification process to make it faster and more efficient than it currently is. Right now,
employees at AFIC manually enter instructor certification data into spreadsheets, which is a
tedious and timely process. Moreover, the current instructor certification information process is
also costly considering employees spend their time entering in the instructor certification
information when they could be doing other work that has equal or higher priority. Automating
the instructor certification process within a web application that both AFIC managers and
instructors can utilize will help keep the instructor certification data be more consistent and
accurate while providing an organized approach to how the data is collected and managed.

4.2 References

[1] "Amazon Web Services (AWS) - Cloud Computing Services", Amazon Web Services, Inc.,
 2019. [Online]. Available: https://aws.amazon.com/. [Accessed: 26- Mar- 2019].

[2] "Angular", Angular.io, 2019. [Online]. Available: https://angular.io/. [Accessed: 26- Mar-
 2019].

[3] "Django", Djangoproject.com, 2019. [Online]. Available: https://www.djangoproject.com/.
 [Accessed: 26- Mar- 2019].

[4] "Enzyme", Airbnb.io, 2019. [Online]. Available: https://airbnb.io/enzyme/. [Accessed: 26-
 Mar- 2019].

[5] "Express - Node.js web application framework", Expressjs.com, 2019. [Online]. Available:
 https://expressjs.com/. [Accessed: 26- Mar- 2019].

[6] "Farrell's eXtreme Bodyshaping", Extremebodyshaping.com, 2019. [Online]. Available:
 https://extremebodyshaping.com/. [Accessed: 26- Mar- 2019].

[7] "Jest · 🃏 Delightful JavaScript Testing", Jestjs.io, 2019. [Online]. Available:
 https://jestjs.io/. [Accessed: 26- Mar- 2019].

[8] ”Microsoft Azure", Azure.microsoft.com, 2019. [Online]. Available:
 https://azure.microsoft.com/. [Accessed: 26- Mar- 2019].

[9] T. Otwell, "Laravel - The PHP Framework For Web Artisans", Laravel.com, 2019. [Online].
 Available: https://laravel.com/. [Accessed: 26- Mar- 2019].

[10] "React – A JavaScript library for building user interfaces", Reactjs.org, 2019. [Online].
 Available: https://reactjs.org/. [Accessed: 26- Mar- 2019].

[11] "Sequelize", Docs.sequelizejs.com, 2019. [Online]. Available: http://docs.sequelizejs.com/.
 [Accessed: 26- Mar- 2019].

sddec19-04 15

https://aws.amazon.com/
https://angular.io/
https://www.djangoproject.com/
https://airbnb.io/enzyme/
https://expressjs.com/
https://extremebodyshaping.com/
https://jestjs.io/
https://azure.microsoft.com/
https://laravel.com/
https://reactjs.org/
http://docs.sequelizejs.com/

[12] "spring.io", Spring.io, 2019. [Online]. Available: https://spring.io/. [Accessed: 26- Mar-
 2019].

[13] "Vue.js", Vuejs.org, 2019. [Online]. Available: https://vuejs.org/. [Accessed: 26- Mar-
 2019].

sddec19-04 16

https://spring.io/
https://vuejs.org/

4.3 Appendices
No hardware was used for this project, so there are no data sheets or related materials available.
Common programming libraries will be used within the web application, so there are no
appendices to list for this project.

sddec19-04 17

